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Outline

1. Stratified Randomization in Clinical Trials
I How to improve precision with stratified randomization and

covariate adjustment?
I 35 min

2. Analysis of Covariance in Randomized Trials
I When and how to use analysis of covariance?
I 5 min

3. Joint Modeling Multiple Covariance Matrices
I How to identify brain networks that are common across people

via analysis of their functional brain imaging data?
I 5 min
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Open question

In randomized clinical trials, how can we do model-robust
inference under stratified randomization?

I Randomized clinical trial (RCT): gold standard for
evaluating the efficacy of new treatments.

I Model-robust inference: valid statistical inference even when
the assumed model is wrong.

I Stratified randomization: treatment allocation stratified by
baseline strata using permuted blocks.
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Background

I Stratified randomization is widely used in practice.
I Lin et al. (2015) surveyed 224 randomized trials, 183 (70%)

used stratified randomization.

I Stratified randomization ensures treatment balance within
each stratum.
I Simple randomization allocates treatment by independent

coin flips and does not ensure treatment balance.
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Background

I The difference between simple randomization and stratified
randomization is usually ignored.
I Less than 50% of trials that used stratified randomization

adjusted for strata in their analyses (Kahan and Morris, 2012).

I For many commonly used estimators, little is known about
their asymptotics under stratified randomization.
I The asymptotic results are generally needed to construct

confidence intervals.

First goal of this paper
Derive the asymptotic results for commonly used estimators in
RCTs under stratified randomization.
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Background

I Recent work showed that stratified randomization can lead to
precision gain for some simple estimators under certain
scenarios. (Shao et al., 2010; Bugni et al., 2018; Li and Ding,
2020, etc)

I Covariate adjustment is also known as a tool to improve
precision. (FDA, 2019, 2020)

I Precision gain can be translated into sample size reduction.

Second goal of this paper
Improve precision by combining stratified randomization and
covariate adjustment.
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Example

CTN44 (Campbell et al., 2014) is an RCT evaluating
internet-delivered treatment for substance abuse.
I Treatment: Therapeutic Education System versus Treatment

as usual.
I Outcomes: number of negative urine tests (continuous) and

time to abstinence (time-to-event).
I Baseline variables: age, sex and urine laboratory result.
I Stratified randomization: treatment allocation stratified by

abstinence status at baseline (4 strata).
I Estimands: Average treatment effect and survival function.

Questions
1. How to perform valid statistical inference?
2. How to improve its precision? (12%)
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Our contributions

1. I derived the model-robust consistency and asymptotic
normality for a wide class of estimators under stratified
randomization, which covers essentially all estimators used in
primary analyses of RCTs.

2. I showed how to improve precision by stratified randomization
and covariate adjustment compared to standard practice.

3. The above results also hold for the biased-coin
covariate-adaptive design.
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Related work
I Shao et al. (2010); Shao and Yu (2013) proved the validity of the

two-sample t-test under the biased-coin design assuming generalized
linear model.

I Ma et al. (2015, 2018) assumed a linear model and derived the
asymptotic distribution of the test statistic of ATE for the ANCOVA
estimator and a class of covariate-adaptive designs.

I Bugni et al. (2018) established the asymptotic theory of the
unadjusted estimator and the ANCOVA estimator (adjusting
for strata only) of ATE for a wide range of covariate-adaptive
designs.

I Ye and Shao (2020) derived asymptotics for log-rank and score tests
in survival analysis under covariate adaptive randomization.

I Li and Ding (2020) established the asymptotic theory for the
ANCOVA estimator under covariate-adaptive randomization in the
randomization inference framework.

I More recent papers: Yang et al. (2020); Ma et al. (2020); Ye et al.
(2020).
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Definition
For participant i = 1, . . . , n, we define
I Yi is the outcome variable, which can be continuous, binary or

time-to-event,
I Mi denotes whether Yi is observed (Mi = 1) or missing

(Mi = 0),
I Ai is a binary treatment indicator,
I Xi is a vector of baseline variables, which includes

randomization strata Si.

We use the Neyman-Rubin causal model and assume

Yi = Yi(Ai) = AiYi(1) + (1−Ai)Yi(0),

Mi = Mi(Ai) = AiMi(1) + (1−Ai)Mi(0),

where Yi(a) is the potential outcome and Mi(a) is the “potential
non-missing indicator” for a = 0, 1.
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Definition

Simple randomization
(A1, . . . , An) are assigned by independent Bernoulli draws with
P (Ai = 1) = π, π ∈ (0, 1).
I Large treatment imbalance may occasionally occur.
I Data vectors (Yi,Mi, Ai, Xi), i = 1, . . . , n are independent,

identically distributed.
I Classical theorems, such as the central limit theorem, can be

directly applied to prove asymptotics.



13/44

Definition

Stratified (permuted block) randomization
For each stratum, randomly permuted blocks with fraction π 1’s
and 1− π 0’s are used for sequential allocation.
I Treatment balance is ensured within each stratum.
I Data vectors (Yi,Mi, Ai, Xi), i = 1, . . . , n are identically

distributed, but not independent.

P (A1 = 1, . . . , An = 1) = 0 instead of πn.

I The dependency among data leads to the main challenge to
derive the asymptotics.
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Estimands

Binary and continuous outcomes
Our goal is to estimate a population parameter, for example, the
average treatment effect (ATE)

∆∗ = E[Yi(1)− Yi(0)].

Time-to-event outcomes
Our goal is to estimate the survival curve {Sa(t) : t ∈ [0, τ ]} for
each a = 0, 1, where

Sa(t) = P (Y (a) > t)

and [0, τ ] is the time window of interest.
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Binary and continuous outcomes

Observed data
(Ai,Xi, YiMi,Mi) for i = 1, . . . , n.

M-estimators ∆̂
M-estimators refer to a wide class of estimators that solve systems
of estimating equations (van der Vaart, 1998, Ch. 5).
In general, an M-estimator of parameters θ is the solution to the
following estimating equations:

n∑
i=1

ψ(Ai,Xi, Yi,Mi;θ) = 0,

where ψ is a column vector of known functions.
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Binary and continuous outcomes

Examples of M-estimators
I the ANCOVA estimator (for continuous outcomes).

It is defined as the ordinary least squares estimator of βA in
the linear regression working model

E[Y |A,X] = β0 + βAA+ βt
XX.

The corresponding estimating equations are

ψ(A,X, Y,M ;β0, βA,βX) = {Y−(β0+βAA+βt
XX)}

 1
A
X

 .

I DR-WLS estimator (handling missing outcomes),
I Mixed-effects model for repeated measures (MMRM),
I Targeted maximum likelihood estimator (TMLE).
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Binary and continuous outcomes

Assumptions

(i) The full data vector (Yi(1), Yi(0),Mi(1),Mi(0),Xi),
i = 1, . . . , n are i.i.d.

(ii) Missing at random. M(a) is independent of Y (a) given X
for a = 0, 1.

(iii) Regularity conditions that are similar to the classical
conditions for simple randomization (Section 5.3 of van der
Vaart, 1998).

(iv) The estimating equations ψ are properly chosen.
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Binary and continuous outcomes

Theorem 1
Given the assumptions and under stratified randomization, an
M-estimator ∆̂ is consistent to ∆∗ and satisfies

√
n(∆̂−∆∗)

d−→ N(0, Vstrat),

with Vstrat ≤ Vsimple, where Vsimple is the asymptotic variance of ∆̂
under simple randomization.

We also derive the analytical formula of Vstrat and provide
consistent estimators for Vstrat.
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Binary and continuous outcomes

Example
Given the assumptions, the ANCOVA estimator is consistent and
asymptotically normal under stratified randomization, with

Vstrat = Vsimple −
(1− 2π)2

π(1− π)
E[V ar{Yi(1)− Yi(0)|Si}].

Cases where stratified randomization does not improve
precision
I 1:1 randomization (π = 0.5),
I or no treatment effect heterogeneity among strata

(V ar{Yi(1)− Yi(0)|Si} = 0),
I ANCOVA also adjusts for treatment-by-strata interaction

terms.
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Time-to-event outcomes

Observed data
(Ai,Xi, Ui, δi), where
I Ui = min{Yi,Mi} is the event time,
I δi = I{Yi ≤Mi} is the indicator for not being censored.

Estimator
The Kaplan-Meier estimator for the survival curve is defined as

Ŝa(t) =
∏

j:Tj≤t

(
1−

∑n
i=1 δiI{Ai = a}I{Ui = Tj}∑n
i=1 I{Ai = a}I{Ui ≥ Tj}

)
,

where {Tj , j = 1, . . . ,mn} is the list of unique observed failure
times.
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Time-to-event outcomes

Assumptions

(i) The full data vector (Yi(1), Yi(0),Mi(1),Mi(0),Xi),
i = 1, . . . , n are i.i.d.

(ii) Censoring completely at random: M(a) is independent of
Y (a) for a = 0, 1.

(iii) P (min{Y (a),M(a)} > τ) > 0 for each a = 0, 1.
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Time-to-event outcomes

Theorem 2
Given the assumptions and under stratified randomization,
1. Ŝa(t) is consistent to Sa(t),

2.
{√

n[Ŝa(t)− Sa(t)] : t ∈ [0, τ ]
}

weakly converges to a
Gaussian process GP(0, Vstrat) with Vstrat(t, t) ≤ Vsimple(t, t)
for all t ∈ [0, τ ],

where Vsimple is the asymptotic covariance function of Ŝa(t) under
simple randomization.

We also derive the analytical formula of Vstrat and provide
consistent estimators for Vstrat.
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Proof Sketch

The estimator, ∆̂ or Ŝa(t)

Step 1: Get its influence function IF
under simple randomization.

Step 2: Show its asymptotic linearity with
influence function IF

under stratified randomization.

Step 3: Show its asymptotic normality
and derive its asymptotic variance.

A variate of
Central Limit Theorem
for dependent data

Structure of
dependency

Empirical process
results
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We can use two ways to improve precision/reduce
variance of an estimator:
I Stratified randomization.
I Covariate adjustment.

How much variance reduction can be achieved?

24/44
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Data example 1: variance reduction due to stratified
randomization

I Trial: CTN44
I Time-to-event outcome: time to abstinence
I Group: Therapeutic Education System (treatment)
I Estimator: the Kaplan-Meier estimator

Visit 1 2 3 4 5 6
Survival probability 0.58 0.53 0.47 0.40 0.39 0.33

Proportional
variance reduction
(1− Vstrat/Vsimple)

11% 12% 11% 9% 7% 4%
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Data example 2: variance reduction due to covariate
adjustment

CTN03, CTN30 and CTN44 are RCTs of treatment of substance
use disorder using stratified randomization.
I CTN03 has binary outcomes and CTN30 and CTN44 have

continuous outcomes, all being measures of treatment success.
I Each study has ∼5 baseline variables.

Study
Number

of
Strata

Unadjusted
estimator
(95% CI)

Adjusted
estimator
(95% CI)

Proportional
variance
reduction

CTN03 3 -0.11(-0.21, -0.01) -0.10(-0.19, -0.02) 35%

CTN30 4 0.02(-0.02, 0.05) 0.01(-0.02, 0.04) 17%

CTN44 4 -0.09(-0.14, -0.03) -0.09(-0.14, -0.03) 2%
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Discussion

Practical implications

1. When using stratified randomization, doing statistical inference
with the correct variance (based on Vstrat instead of Vsimple)
can avoid being conservative.

2. Adjusting for a set of preplanned baseline variables may lead to
substantial variance reduction.

Limitations
1. Our results cannot handle cases where some strata have few

participants.
2. For estimating the survival curves, our results only cover the

Kaplan-Meier estimator.
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Motivation

In randomized trials, when and how to adjust for baseline variables
are still debatable.
I Pocock et al. (2002) surveyed 50 randomized trials.

I Only 12 reports emphasized adjusted over unadjusted analysis.
I “The statistical emphasis on covariate adjustment is quite

complex and often poorly understood.”
I Austin et al. (2010) reviewed 114 randomized trials.

I Only 39 presented adjusted estimator.
I They suggested the need for an informed debate about the

merit of adjusted estimators of treatment effect.

Goal of This Paper
We aim to clear common confusions related to covariate
adjustment.
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Our contributions

I I proved the variance estimator (output by standard statistical
softwares) of the ANCOVA estimator is robust to model
misspecification.

I I provided intuition for how covariate adjustment works by an
analogy to linear regression.

I I provided recommendations on when and how to use covariate
adjustment.
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Data application

The table below shows data analyses of three completed trials for
mild cognitive impairment, schizophrenia, and depression.

Trial
Name

Unadjusted
estimator (95% CI)

ANCOVA
estimator (95% CI)

Variance
reduction (R̂2)

MCI -0.19(-0.49, 0.11) -0.18(-0.45, 0.08) 25%

METS -3.66(-6.83, -0.49) -3.60(-6.71, -0.50) 4%

TADS -1.44(-6.02, 3.15) -4.36(-8.14, -0.58) 32%

Highlights of Results
I Variance reduction can be as high as 32%.
I For TADS, covariate adjustment leads to a significant results

with p-value 0.01.
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Practical Recommendations

1. The ANCOVA model can be used for inference even if it is
misspecified.

2. Adjusting for the baseline score of the outcome measure is
recommended.

3. For large trials, covariate adjustment is highly recommended.
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Motivating data example: HCP motor-task fMRI data

The data set includes fMRI scans of 136 healthy young adults.

In each scan, the task fMRI consists of ten task blocks including
moving tongue, hand or foot.

Given the task fMRI data, we are interested in identifying
task-related “common brain networks”.
I A common brain network represents correlations in functional

brain measures consistent across subjects.
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Mathematical formulation

I For each subject i, i = 1, . . . , n, the correlation among p brain
regions forms a p× p covariance matrix Σi.

I Each Σi can be decomposed by principal component analysis
(PCA), resulting in n sets of principle components.

I A common brain network is a principle component that is the
same across subjects.

I A common brain network may be associated with large or
small eigenvalues for different subjects.

Goal of this paper
Given the sample covariance matrices Si, we aim to estimate:
1. The number of common brain networks.
2. Each common brain network.
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Main contributions

1. I proposed consistent estimators of common brain networks
and the number of common brain networks.

2. The proposed estimators relax assumptions made by existing
literature and are able to handle more complex and realistic
settings.

3. The proposed methods can be applied to other areas, such as
economics.
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Data application

Below is an example of common brain network identified by our
method.

Figure 1: Average time course (left panel) and brain regions (right panel).
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Future directions

1. For RCTs using stratified randomization and having
time-to-event outcomes, an open question is how to derive the
asymptotic distribution of covariate-adjusted estimators
(Zhang, 2015, Lu and Tsiatis, 2011).

2. When identifying common brain networks, how to best handle
correlation of data vectors remain future directions.

3. In analyses of RCTs, how to best pick the set of covariates to
use in an adjusted estimator is a challenging problem.
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The slides are available at
https://bingkaiwang.com.

The papers are available at
https://doi.org/10.1111/biom.13062,
https://arxiv.org/abs/1910.13954,

https://doi.org/10.1111/biom.13369.

The R code is available at
https://github.com/BingkaiWang.
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